Project partners		
Technical University of Denmark	DK	DTU
Ballard Power Systems Europe	DK	BALLARD'
SINTEF	N	() SINTEF
CoorsTek Membrane Sciences	N	CORSTEK MEMBRANE SCIENCES
VARD	N	a Fincantieri company
VTT	FIN	VTT

Contact:

Project Coordinator

Prof. Dr. Dr. Anke Hagen

Technical University of Denmark

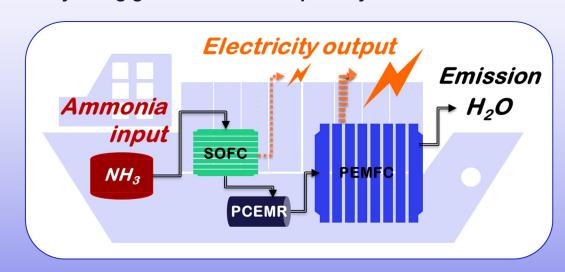
Department of Energy Conversion and Storage Fysikvej B. 310, DK-2800 Kongens Lyngby, Denmark

Phone: +45 46775884

Email: anke@dtu.dk

Meet us here:

Internet: https://www.aegir-project.net/


AEGIR

Ammonia electric marine power for GHG emission reduction

This project has received funding from the Nordic Maritime Transport and Energy Research Programme through National Financiers: the Energy Technology Development and Demonstration Program (EUDP) in Denmark, the Norwegian Research Council (RCN) in Norway, and Business Finland in Finland.

- Ships are responsible for 90% of international transport, their CO₂ emissions accounting for approximately 2.2% of the global total of such emissions
- The overall target of the Aegir project is to develop, test and evaluate an environmentally friendly technological solution to power large marine vessels by using green ammonia as primary fuel.
- The Aegir concept:
 - Ammonia is cracked to H₂ and N₂ using a solid oxide fuel cell (SOFC);
 - II. H₂ is extracted and purified using a proton conducting electrochemical membrane (PCEMR)
 - III. Converted to electricity using a polymer exchange membrane fuel cell (PEM).
 - By combining these three technologies, AEGIR aims at developing an ammonia-fueled ship propulsion system that offers high efficiency in combination with a low total system volume and weight, which is the key innovation of the project.
 - The Aegir concept avoids emissions of NO_x and allows for a drastic reduction of CO₂ emissions; the product of the fuel cell electricity process is water.

- > The Aegir project will
 - Design the integrated concept,
 - Experimentally validate the three key enabling technologies
 - Demonstrate a reduction of greenhouse gas emissions by 90% compared to current state in a well-to-propeller analysis, and
 - Identify potential scale up issues for a 20 MW maritime system in a concept study.